Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances

نویسندگان

  • A. A. Mosavi
  • S. Rizkalla
چکیده

This paper presents a study for identifying damage locations in an idealized steel bridge girder using the ambient vibration measurements. A sensitive damage feature is proposed in the context of statistical pattern recognition to address the damage detection problem. The study utilizes an experimental program that consists of a two-span continuous steel beam subjected to ambient vibrations. The vibration responses of the beam are measured along its length under simulated ambient vibrations and different healthy/damage conditions of the beam. The ambient vibration is simulated using a hydraulic actuator, and damages are induced by cutting portions of the flange at two locations. Multivariate vector autoregressive models were fitted to the vibration response time histories measured at the multiple sensor locations. A sensitive damage feature is proposed for identifying the damage location by applying Mahalanobis distances to the coefficients of the vector autoregressive models. A linear discriminant criterion was used to evaluate the amount of variations in the damage features obtained for different sensor locations with respect to the healthy condition of the beam. The analyses indicate that the highest variations in the damage features were coincident with the sensors closely located to the damages. The presented method showed a promising sensitivity to identify the damage location even when the induced damage was very small. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Based Structural Damage Detection Algorithm Using Gaussian Mixtures Modeling

In this paper, a time series based detection algorithm is proposed utilizing the Gaussian Mixture Models. The two critical aspects of damage diagnosis that are investigated are detection and extent. The vibration signals obtained from the structure are modeled as autoregressive moving average (ARMA) processes. The feature vector used consists of the first three autoregressive coefficients obtai...

متن کامل

Response Spectra of Structures under Subway Induced Vibrations

Passing underground trains induce vibrations transmitted to the ground surface and the nearby structures. Ordinarily, these vibrations do not result in structural damage but can harm nonstructural elements and disturb the occupants. These effects are more pronounced when evaluating buildings like hospitals, laboratories, museums, etc., and their assessment is an important design need. To respon...

متن کامل

Robust Estimation in Vector Autoregressive Models Based on a Robust Scale

A new class of robust estimates for vector autoregressive processes is proposed. The autoregressive coefficients and the covariance matrix of the innovations are estimated simultaneously by minimizing the determinant of the covariance matrix estimate, subject to a constraint on a robust scale of the Mahalanobis norms of the innovation residuals. By choosing as robust scale a τ− estimate, the re...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

The application of statistical pattern recognition methods for damage detection to field data

Recent studies in structural health monitoring have shown that damage detection algorithms based on statistical pattern recognition techniques for ambient vibrations can be used to successfully detect damage in simulated models. However, these algorithms have not been tested on full-scale civil structures, because such data are not readily available. A unique opportunity for examining the effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011